Search results for "industrial wastewater"
showing 10 items of 40 documents
Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater
2017
Results obtained from three aerobic granular sludge reactors treating brewery wastewater are presented. Reactors were operated for 60 d days in each of the two periods under different cycle duration: (Period I) short 6 h cycle, and (Period II) long 12 h cycle. Organic loading rates (OLR) varying from 0.7 kg COD m-3 d-1 to 4.1 kg COD m-3 d-1 were tested. During Period I, granules successfully developed in all reactors, however, results revealed that the feast and famine periods were not balanced and the granular structure deteriorated and became irregular. During Period II at decreased 12 h cycle time, granules were observed to develop again with superior structural stability compared to the…
Start-Up of Chitosan-Assisted Anaerobic Sludge Bed Reactors Treating Light Oxygenated Solvents under Intermittent Operation
2021
Quality of the granular sludge developed during the start-up of anaerobic up-flow sludge bed reactors is of crucial importance to ensure the process feasibility of treating industrial wastewater such as those containing solvents. In this study, the microbial granule formation from suspended-growth biomass was investigated in two chitosan-assisted reactors. These reactors operated mimicking industrial sites working with night closures treating a mixture of ethanol, ethyl acetate, and 1-ethoxy-2-propanol. Each reactor operated under different hydrodynamic regimes typical from UASB (R1: <
Correlation of wood-based components and dewatering properties of waste activated sludge from pulp and paper industry.
2010
Large amounts of wet sludge are produced annually in municipal and industrial wastewater treatment. Already in pulp and paper industry, more than ten million tons of primary sludge, waste activated sludge, and de-inking sludge is generated. Waste activated sludge contains large quantities of bound water, which is difficult to dewater. Low water content would be a matter of high calorific value in incineration but it also has effects on the volume and the quality of the matter to be handled in sludge disposal. In this research waste activated sludges from different pulp and paper mills were chemically characterised and dewatered. Correlations of chemical composition and dewatering properties…
Simulation and control of dissolved air flotation and column froth flotation with simultaneous sedimentation.
2020
Abstract Flotation is a separation process where particles or droplets are removed from a suspension with the aid of floating gas bubbles. Applications include dissolved air flotation (DAF) in industrial wastewater treatment and column froth flotation (CFF) in wastewater treatment and mineral processing. One-dimensional models of flotation have been limited to steady-state situations for half a century by means of the drift-flux theory. A newly developed dynamic one-dimensional model formulated in terms of partial differential equations can be used to predict the process of simultaneous flotation of bubbles and sedimentation of particles that are not attached to bubbles. The governing model…
Characterization of activated sludge settling properties with a sludge collapse-acceleration stage
2019
Abstract The sedimentability of the activated sludge can be affected by the presence of a large variety of coagulants and polymers from a previous physical-chemical process. In this paper, the activated sludge settling process in industrial wastewater treatment plants where the sludge does not settle in a conventional way is studied. The two observed constant hindered settling velocity stages and the instant the intermediate sludge acceleration period occurs are described. A variation of the Richardson and Zaki model is used to characterize the two stages of constant settling velocity. The concentration of suspended solids, where a sudden decrease of hindered settling velocity was observed,…
Biological effects and photodegradation by TiO(2) of terpenes present in industrial wastewater.
2010
Abstract The aim of this work was to study the biological effects of four monoterpenes, i.e. α-pinene, β-pinene, 3-carene and d -limonene present in the wastewater of a citrus transformation factory. The study was carried out by exposing V79 Chinese hamster cells to single terpene or to the mixture of four terpenes at concentrations corresponding to those in the wastewater evaluated by head space solid phase micro extraction and gas chromatography (HS-SPME-GC) analyses. Treatments with single or combined terpenes similarly affected cell vitality, but only the combined treatments induced the 6-thioguanine resistant mutants. Moreover the photocatalytic degradation of the four terpenes was suc…
Heavy metal uptake by plants from wastewater of different pulp concentrations and contaminated soils
2021
There is a lack of information on the extent of mineral extraction by plants from wastewater in arid and semi-arid environments in developing countries. This research assesses the performance of Alhagi and Mallow plant species for the absorption of heavy metals around the tailings dam of a copper mine in Iran. The industrial wastewater, known as the pulp, from the copper mine site has different concentrations of heavy metals. In a laboratory setting the plants were cultivated and irrigated with different pulp concentrations (0, 20, 40, 60, 80, and 100%) in water. Heavy metals (chromium, manganese, cadmium, and lead) accumulation in the aerial parts and roots of the plants, and the in-situ s…
Combined membrane and thermal desalination processes for the treatment of ion exchange resins spent brine
2019
Abstract The disposal of industrial wastewater effluents represents a critical environmental issue. This work focuses on the treatment of the spent brine produced by the regeneration of ion exchange resins employed for water softening. For the first time, a comprehensive techno-economic assessment and an analysis of the energy requirements of the treatment chain are carried out, via the simulation of ad hoc implemented models. The chain is composed of nanofiltration, double-stage crystallization and multi-effect distillation. The valuable product is the brine produced by the multi-effect distillation, which can be re-used for the regeneration. Therefore, the treatment chain’s economic feasi…
Diffusion dialysis for the treatment of H2SO4-CuSO4 solutions from electroplating plants: Ions membrane transport characterization and modelling
2021
Diffusion dialysis (DD) is proposed to separate and recover mineral acids and transition metals from electroplating industry process waters promoting a circular approach of resources recovery. In this work, a DD module with two anionic membranes (Fumasep FAD and Neosepta AFN) are used for the separation of H2SO4 from Cu2+ containing solutions. The membrane performances with sole H2SO4 solutions (0.2–2 M) and sole CuSO4 solutions (0.8–1.1 M Cu2+) and with mixtures of H2SO4 (0.6 M) and CuSO4 (0.2–1.1 M Cu2+) as feed are studied. H2SO4 recovery efficiency decreases as the concentration of acid increases. For H2SO4 solutions, the water drag flux from the retentate to the diffusate prevails agai…
Biological Nutrient Removal and Fouling Phenomena in a University of Cape Town Membrane Bioreactor Treating High Nitrogen Loads
2013
The behavior of a University of Cape Town (UCT) membrane bioreactor (MBR) system was investigated for use in biological nutrient removal from real wastewater. The pilot plant was in operation for a period of 165 days, during which an extensive data gathering campaign was conducted. The pilot plant was started up by inoculating it with activated sludge from a nearby wastewater treatment plant, and it was fed by real municipal wastewater characterized by high organic nitrogen concentrations attributable to discharges from industrial wastewater and sporadic landfill leachate. Carbon and biological nutrient removal processes, a sludge production process, and a membrane fouling mechanism were an…